36 research outputs found

    On the Galoisian Structure of Heisenberg Indeterminacy Principle

    Get PDF
    We revisit Heisenberg indeterminacy principle in the light of the Galois-Grothendieck theory for the case of finite abelian Galois extensions. In this restricted framework, the Galois-Grothendieck duality between finite K-algebras split by a Galois extension L and finite Gal(L:K)-sets can be reformulated as a Pontryagin-like duality between two abelian groups. We then define a Galoisian quantum theory in which the Heisenberg indeterminacy principle between conjugate canonical variables can be understood as a form of Galoisian duality: the larger the group of automorphisms H (a subgroup of G) of the states in a G-set O = G/H, the smaller the ``conjugate'' observable algebra that can be consistently valuated on such states. We then argue that this Galois indeterminacy principle can be understood as a particular case of the Heisenberg indeterminacy principle formulated in terms of the notion of entropic indeterminacy. Finally, we argue that states endowed with a group of automorphisms H can be interpreted as squeezed coherent states, i.e. as states that minimize the Heisenberg indeterminacy relations

    Extended Gauge Principle and Quantization of Gauge Theories

    Get PDF

    Pleromática o las Mareaciones de Elsinor

    Get PDF

    De la filosofia como polifanía

    Get PDF

    Fibras cuánticas para sistemas clásicos: introducción a la cuantificación geométrica

    Get PDF
    In this article, We shall introduce the formalism of canonical quantization called "geometric quantization". Since this formalism let us understand quantum mechanics as a geometric extension of classical mechanics, we shall identify the insufficiencies of the latter that are resolved by such an extension. We shall show that geometric quantization permits us to explain some fundamental features of quantum mechanics, such as the non-commutativity of quantum operators and the discrete spectrum of some operators describing physical quantities.En este artículo, se introducirá el formalismo de cuantificación canónica denominado "cuantificación geométrica". Dado que dicho formalismo permite entender la mecánica cuántica como una extensión geométrica de la mecánica clásica, se identificarán las insuficiencias de esta última resueltas por dicha extensión. Se mostrará luego como la cuantificación geométrica permite explicar algunos de los rasgos distintivos de la mecánica cuántica, como, por ejemplo, la noconmutatividad de los operadores cuánticos y el carácter discreto de los espectros de ciertos operadores

    Time asymmetries in quantum cosmology and the searching for boundary conditions to the Wheeler-DeWitt equation

    Get PDF
    The paper addresses the quantization of minisuperspace cosmological models by studying a possible solution to the problem of time and time asymmetries in quantum cosmology. Since General Relativity does not have a privileged time variable of the newtonian type, it is necessary, in order to have a dynamical evolution, to select a physical clock. This choice yields, in the proposed approach, to the breaking of the so called clock-reversal invariance of the theory which is clearly distinguished from the well known motion-reversal invariance of both classical and quantum mechanics. In the light of this new perspective, the problem of imposing proper boundary conditions on the space of solutions of the Wheeler-DeWitt equation is reformulated. The symmetry-breaking formalism of previous papers is analyzed and a clarification of it is proposed in order to satisfy the requirements of the new interpretation.Comment: 25 pages, 1 figur

    On Classical and Quantum Objectivity

    Get PDF
    We propose a conceptual framework for understanding the relationship between observables and operators in mechanics. To do so, we introduce a postulate that establishes a correspondence between the objective properties permitting to identify physical states and the symmetry transformations that modify their gauge dependant properties. We show that the uncertainty principle results from a faithful -or equivariant- realization of this correspondence. It is a consequence of the proposed postulate that the quantum notion of objective physical states is not incomplete, but rather that the classical notion is overdetermined

    Quantum Ontology in the Light of Gauge Theories

    Get PDF
    We propose the conjecture according to which the fact that quantum mechanics does not admit sharp value attributions to both members of a complementary pair of observables can be understood in the light of the symplectic reduction of phase space in constrained Hamiltonian systems. In order to unpack this claim, we propose a quantum ontology based on two independent postulates, namely the phase postulate and the quantum postulate. The phase postulate generalizes the gauge correspondence between first-class constraints and gauge transformations to the observables of unconstrained Hamiltonian systems. The quantum postulate specifies the relationship between the numerical values of the observables that permit us to individualize a physical system and the symmetry transformations generated by the operators associated to these observables. We argue that the quantum postulate and the phase postulate are formally implemented by the two independent stages of the geometric quantization of a symplectic manifold, namely the prequantization formalism and the election of a polarization of pre-quantum states respectively
    corecore